ϕ-symmetric contact metric spaces
نویسندگان
چکیده
منابع مشابه
Five–Dimensional φ–Symmetric Spaces
It is still an open problem whether Riemannian manifolds all of whose local geodesic symmetries are volume–preserving (i.e., D’Atri spaces) or more generally, ball–homogeneous spaces, and C-spaces are locally homogeneous or not. We provide some partial positive answers by proving that five–dimensional locally φ–symmetric spaces can be characterized as Sasakian spaces which are ball–homogeneous ...
متن کاملProjective φ-symmetric K-contact manifold admitting quarter-symmetric metric connection
We obtain curvature tensor R̃(X, Y )Z w.r.t quarter-symmetric metric connection in terms of curvature tensor R(X,Y )Z relative to the Levi-civita connection in a K-contact manifold. Further, locally φ-symmetric, φ-symmetric and locally projective φ-symmetric K-contact manifolds with respect to the quarter-symmetric metric connection are studied and some results are obtained. The results are assi...
متن کاملFixed points for weak φ-contractions on partial metric spaces
In this paper, following [W.A. Kirk, P.S. Srinivasan, P. Veeramani, Fixed points for mappings satisfying cyclical contractive conditions, Fixed Point Theory. 4 (2003) 79-89], we give a fixed point result for cyclic weak φ-contractions on partial metric space. A Maia type fixed point theorem for cyclic weak φ-contractions is also given.
متن کاملGeneralized Symmetric Divergence Measures and Metric Spaces
Abstract Recently, Taneja [7] studied two one parameter generalizations of J-divergence, Jensen-Shannon divergence and Arithmetic-Geometric divergence. These two generalizations in particular contain measures like: Hellinger discrimination, symmetric chi-square divergence, and triangular discrimination. These measures are well known in the literature of Statistics and Information theory. In thi...
متن کاملMetric compacti cations of locally symmetric spaces
We introduce hyperbolic and asymptotic compactiications of metric spaces and apply them to locally symmetric spaces ?nX. We show that the reductive Borel{Serre compactiication ?nX RBS is hyperbolic and, as a corollary, get a result of Borel, and Kobayashi{Ochiai that the Baily{Borel compactiication ?nX BB is hyperbolic. We prove that the hyperbolic reduction of the toroidal compactiications ?nX...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Glasgow Mathematical Journal
سال: 1999
ISSN: 0017-0895
DOI: 10.1017/s0017089599000579